
Share-VDE and FOLIO cooperation

A challenge to introduce linked open data into the wider FOLIO perspectives

WOLFcon 2022, September 2
Tiziana Possemato

https://openlibraryfoundation.org/about/wolfcon/upcoming/

Share-VDE as a library-driven community

Share-VDE in a nutshell

What Share-VDE does:
MARC data (or other traditional formats) are
converted to linked data

data describing library resources are
connected in a union catalogue, and can be
queried as authoritative source

exposition for end users and professionals
on the web platform www.svde.org

a platform to manage data in a linked open
data environment

3

Since 2016, R&D work to facilitate libraries
in the transition from MARC-based
cataloguing to linked data

this expanded over time from the pilot
project to Share-VDE and the Share
Family of initiatives

https://svde.org
https://wiki.svde.org/
Casalini Lab
Share - Linked Data Environment

http://www.svde.org
https://svde.org
https://wiki.share-vde.org/
https://www.casalini.it/casalini_lab.asp?LINGUA=ING
https://www.casalini.it/linked-data-for-libraries/

A cooperative and library-driven initiative

4

Share-VDE is a collaborative initiative based on the needs of libraries, developed and supported by:

Casalini Libri, provider of bibliographic and authority data as member
of the Program for Cooperative Cataloguing;

@Cult, provider of ILS, Discovery tools and Semantic web solutions for
the cultural heritage sector;

with input and active participation from an international group of
research libraries.

the joint effort of the Share-VDE Advisory Council and of the Working
Groups;

the vision of Linked Data for Production initiative with special
endorsement of Stanford;

5

A collaborative
community can

produce a gravitational
wave of energy that

expands...

6

… and meets other
communities, with

other energy to Share

Active participation

7

Libraries members of
SVDE working groups
and parallel projects
are constantly
contributing with their
Subject Matter Experts
to requirements
gathering, functional
analysis and feedback
to developments.

Share Family and Share-VDE liaisons

8

PCC liaison: Nancy
Fallgren,
NLM-NIH

Kubikat-LOD liaison: Cora
Molloy, Max-Planck-Institute

SHARE Catalogue liaisons: Roberto Delle
Donne and Claudio Forziati,
Università degli Studi di Napoli Federico II

IFLA Bibliography Section
liaison: Maud Henry, KBR -
Royal Library of Belgium

PCC BIG group

Community engagement: library community

9

Extended community:
collaboration with
heterogeneous initiatives and
institutions in the library domain

Scientific value: sharing of data
and services in different
technological environments and
diverse bibliographical and
cultural context

Community engagement: World Wide Web

10

Mixed community:
cross-domain cooperation
across the Web community

Scientific value: same
solutions serve scopes of
different communities, data
reuse

FOLIO - Share-VDE intersection

This intersection is what we want to discuss: how to manage a data flows for libraries that are both part
of FOLIO community and of Share-VDE community

Orchestration of data flow

Share-VDE - FOLIO data flow

https://drive.google.com/file/d/1FkSlgEITWE_ufUDNG_x4lbN1wByxoij4/view

SVDE - FOLIO data flow - Step 1(1/2)
1) Main event: Records in MARC 21 are created/edited in
MARC-Up (or in any local cataloguing environment) and
updated in Inventory using the FOLIO APIs.
In progress: the same flow, from a BF editor (eg J.Cricket) to
Inventory.

Extended description
Record-based metadata is created using MARC-Up, the cataloging module to edit
MARC 21 (bibliographic and authority) records. The same process applies to LOD
based workflow.

The data created with MARC-Up, as MARC 21, or with a BF editor, are then
automatically updated in FOLIO Inventory, using the mod_inventory suite of APIs
(mod_inventory, mod_inventory_storage, and mod_inventory_update). All create,
update, and delete operations are performed on MARC-Up or BF editor and each
modification is made in FOLIO Inventory in real-time. The data flow is always from
the cataloging/editing tools to Inventory and never vice versa: every
update/correction/cancellation of data are made in MARC-Up/BF editor and
reflected on Inventory.

SVDE - FOLIO data flow - Step 1(2/2)

1) Main event: Data in RDF created using one of possible BF
editor (eg J.Cricket) are updated in Inventory using the FOLIO
APIs.

Extended description
RDF created in a potential BF editor are reflected in Inventory through FOLIo APIs.
Consistency of identification/relationships of BF entity - Inventory/Instance is
guaranteed through identifiers (every entity and every attribute in a LOD
environment has its own identifier, that needs to be reflected in the
Inventory/Instance).

SVDE - FOLIO data flow - Step 2

2) Main event: Groups of records are downloaded and
imported into MARC-Up database from external sources

Extended description
Data can come from external sources using the Import tool: data in multiple
formats can be downloaded and imported into the MARC-Up database using the
Import function of the Import tool. Data saved on MARC-Up database are also
updated on Inventory, using the related Inventory Batch API.

SVDE - FOLIO data flow - Step 3

3) Main event: Instances are created in FOLIO-Inventory

Extended description
Following the creation of the instance record in MARC-Up/BF editor and the corresponding
flow of records into FOLIO Inventory, holdings and items are added using the FOLIO Inventory
app. The Inventory app records are a subset of richer descriptive formats (such as MARC2 1 and
Linked Open Data), and contain enough information to be used in the other library workflows
(acquisitions, circulation, etc.).

SVDE - FOLIO data flow - Step 4

4) Main event: the Library exports the records to the LOD
system in one of the supported formats.

Extended description
Original data are exported using the Import/Export tool in an overnight automated
process. Original data can be exported in different formats, e.g.:

1. MARC 21 bibliographic records;
2. MARC 21 authority records;
3. RDF created using LC editor (Marva), Sinopia or J.Cricket: in case an RDF editor

will be included, such as Sinopia - see item 15 - the RDF format will be managed
as original format, for data created as linked data from scratch;

4. other possible formats
Data are sent in the LOD pipeline to be automatically converted in RDF following the
SVDE/Lib conversion rules. Data export, in order to provide LOD conversion, must be
performed by both SMMS (for bibliographic and authority records) and FOLIO (for
Holdings / Copies data).

SVDE - FOLIO data flow - Step 5

5) Main event: Metadata produced during the cataloging
processes are analysed to comply with LOD conversion
processes (clustering of entities and conversion) using the
mapping tool

Extended description
Metadata in different formats is analyzed to identify the elements (content and format)
useful for subsequent clustering and conversion processes into LOD. The system is
sufficiently flexible to allow the extension of the source formats over time, allowing it to
adapt the clustering and conversion processes in an agile way. This mapping
phase—supported, in the case of new formats, by the analysis of domain experts—allows
for the adjustment of the clustering and conversion logic in order to accept a wide and rich
range of formats.

SVDE - FOLIO data flow - Step 6
6) Main event: The LOD Platform clustering tool creates clusters of entities (Agents,
Work, Instance etc.)

Extended description
LOD Platform - Clusterization tool: the tool includes the clustering logic for the data coming from different, often
non-homogeneous, sources in order to create the entity as a Real-World-Object (RWO) and assign a unique identifier. By
clustering, we mean the mechanism of identification of the entities with Large Scale Fuzzy Name Matching Techniques,
through different text analysis methods such as:

● Common key
● List
● Edit distance
● Statistical similarity
● Word embedding

These methods tackle issues about data identification, among them: similar names, split database fields, phonetic
similarity, spelling differences, truncated components, titles and honorifics, initials and nicknames, etc. Other analysis
logic supports the creation of a cluster / entity as well as the definition of the preferred form, among the many possible
variants, to be assigned during the data presentation phase, including:

● access point size/weight
● usage count
● identifiers presence, etc.

(continues) SVDE - FOLIO data flow - Step 6

The process produces a cluster of data in which the many possible variant forms of a name (of whatever entity it is) are reconciled and collected
in a cluster, which is assigned an identifier unique to the Library. The entities already managed with clustering processes are the following:

● Agent (Person, Organization, Family, Meeting)
● svde:Opus
● Work (with also HUB type)
● Instance
● Item
● Subject (Agents type, right now)
● Topics: we currently have algorithms and processes to enrich a topic with external URIs from external sources (such as FAST or LCSH)

using mostly string matching. Intense work is being carried on to enrich terms from subject strings with Wikidata sources; this allows the
Library to expand the number of identifiers, thus partially overcoming the issue of different alphabets and reducing the risk of creating
clusters that seem to identify the same entity but actually don’t (entity recognition process).

In addition we manage some “domain” entities, such as:
● places;
● occupations;
● roles;
● languages;
● other data coming from controlled vocabularies.

SVDE - FOLIO data flow - Step 7

7) Main event: entities are enriched with data from external sources (e.g.
VIAF, Wikidata, FAST etc.)

Extended description

Authify is a RESTFul module that offers several search and detection services. At the very beginning, the
LOD Platform project aimed at overcoming some limitations of the public VIAF Web API with the goal to
obtain more comprehensive and precise URI retrieval results. VIAF, being a public project, doesn’t allow a
heavy invocation of its API: for those use cases where such a requirement is needed, the VIAF project
provides a download of the whole dataset.
That was the main reason why Authify was implemented: indexing and storing the VIAF clusters dataset
and providing, on top of that, powerful full-text and bibliographic search services. Other sources will be
added progressively, to answer different libraries’ needs.
The Authify Cluster Search Services provide, as the name suggests, a full-text search service among
names and works clusters. The search Web API uses, behind the scenes, an “invisible queries” approach in
order to try and find a match, as precise as possible, within the managed clusters.

In Authify, a complete hyperlinking process is created and the final result is a much richer and
well-identified entity than the original one

SVDE - FOLIO data flow - Step 8

8) Main event: the data imported from external sources
(e.g. VIAF, Wikidata, FAST etc.)

Extended description
The Authify tool also manages the external entity data sources through different
processes depending on the query methods available from the external source
(APIs/Web Services, bulk file loads, protocols etc.). At the beginning of each new
project, a check list of the most relevant sources for the specific project is done with
the target library in order to identify new available sources to be included in the
process.

SVDE - FOLIO data flow - Step 9

9) Main event: The LOD platform creates an intermediate
file in a proprietary format to feed different internal
pipelines

Extended description
The clusterization/reconciliation/enrichment processes have as output a pxml file, a
proprietary file format designed to express the richness of data in a standard way. This
file is used to feed two distinct processes, the LOD conversion and the text indexing
into SOLR.

SVDE - FOLIO data flow - Step 10

10) Main event: The LOD Platform converts the data from the
editors and processed through the enrichment in steps 3-8 to
linked data

Extended description
RDFizer - The LOD Platform RDF conversion tool. RDFizer (an evolution of the previous
Lodify module) is a RESTFul module that automates the entire process of converting and
publishing data in RDF according to the BIBFRAME 2.0 ontology in a linear and scalable
way. It is flexible and adaptable to multiple situations: it allows the Library to manage the
classes and properties not only of BIBFRAME but also of other ontologies as needed. Lodify
works strictly in conjunction with other LOD Platform tools and components such as
Authify, the database of relationships and the Cluster Knowledge Base. The platform
represents an enhanced and expanded version of the ALIADA framework within an
infrastructure that is better adapted to handle large amounts of data. The enriched pxml
file described in item 9 acts as the input for RDFizer, which translates it into triples and
uploads them to the selected triplestore. Upon completion, the RDF data can be extracted
as a Turtle file by using the APIs provided by the triplestore.

RDFizer manages two conversion procedures:

- Cluster Conversion: converts data obtained from the
cluster enrichment process;

- Record Conversion: converts data obtained from an
enriched MARC/MODS file into a triple.

SVDE - FOLIO data flow - Step 11

11) Main event: the data processed are indexed by the Solr
search engine

Extended description
The Discovery Index (SOLR) - The same pxml file from item 9 is used for the inverted index
in SOLR: this search engine, used in combination with the triplestore for the presentation of
data in the search portal, allows to enormously extend the entities search and retrieval.
Combined with what is made available by the triplestore, it allows the end user to access
the data by having the entity as the subject of the research, and no longer the bibliographic
or authority records. A complex and extended knowledge panel will be proposed for each
entity addressed in the system, to show its attributes and the rich network of relationships
with other entities, in a way that tries to combine the richness of data with the user-friendly
and intuitive discovery. A long list of search and retrieve logic offered by the SOLR system
can be applied to extend the search capabilities of the system.

SVDE - FOLIO data flow - Step 12

12) Main event: the data converted feed the entities Cluster
Knowledge Base, ie the database of Library entities

Extended description
The Cluster Knowledge Base (CKB) is the result of the data processing and enrichment
procedures with external data sources for each entity. The CKB is populated with clusters of all
the linked data entities that are created within the specific project that uses the LOD Platform.
Such clusters derive from the reconciliation and clustering of the bibliographic and authority
records and of RDF data created by the SMMS (Supplementary Metadata Management
System), to form groups of resources that are reconciled and converted to linked data to
represent a real world object.
The CKB is the authoritative source of the system and it’s available both on the relational
database Postgres (mostly for internal maintenance purposes, reports etc.), as well as in RDF
in order to be used for the Entity Discovery Interface and public exposure. The CKB is updated
both through automated procedures as well as through manual actions via the entity editing
module CKB editor.

SVDE - FOLIO data flow - Step 13

13) Main event: the data converted to RDF are sent to the triple store

Extended description
The Knowledge Graph (triplestore) - The data converted to RDF according to the agreed entity
model (BIBFRAME 2.0 as core ontology, and other classes and properties derived from the
ontologies indicated in point 15) are indexed in the triplestore. Also the data stored in the
triplestore can vary (according to the update cycles defined by the target library), both
through manual and automatic procedures, via the CKB editor module.

The Knowledge Graph contains the CKB in RDF, and relations and connections among
resources can be inferred and queried via SPARQL endpoint. Advanced API layers are
currently under development.

SVDE - FOLIO data flow - Step 14

14) Main event: The data are published to the Entity Discovery
Interface on the web portal.

Extended description
The Discovery Interface will harness the potential of linked data to offer an easy and intuitive
user experience and deliver ever more wide-ranging and detailed search results to library staff,
basing on the BIBFRAME data model.
A library that is already a member of the Share-VDE community has at least two opportunities
to manage its LD discovery portal, to achieve the result to present its data in a linked data
environment:

● set up a dedicated skin portal within the Share-VDE tenant;
● set up an autonomous tenant with independent skin portal as part of the broader Share

Family initiative;
in the flow chart above, the box for the LD portal is drawn with a dashed line precisely to
indicate this double opportunity for the Library to have or not have its own tenant or just a skin
on Share-VDE.
The design focus of the portal, in both the cited approaches, is to provide intuitive access to
complex data and make BIBFRAME easy to understand and benefit from.

SVDE - FOLIO data flow - Step 15
15) Main event: Entity modeling is a key process in a LD process. The
system creates BIBFRAME data but can integrate different ontologies

Extended description
The data modeling in a LOD project is one of the most delicate and crucial aspects of the whole
data management process. The conversion tool, Lodify (RDFizer, in the new version), is built in a
way that allows to extend it, following an approach as open as possible to receive and manage
changes/extensions in existing ontologies and the inclusion of new ontologies and controlled
vocabularies. Currently, the conversion tool uses the following ontologies:

● Bibframe, in its version 2.0
● BF-LC
● RDFS
● OWL
● MADS
● PROV-O
● RDA Vocabularies
● LC Vocabularies

SVDE - FOLIO data flow - Step 16

16) Main event: The data produced by SVDE can be edited by J.Cricket
linked data entity editor or by other BF editors (such as Sinopia and/or
Marva, the LC BF editor)

Extended description
All data produced by conversion processes and stored in the different databases can be
modified manually, to better address the issue of data quality.

Within the Share-VDE initiative, a cluster/entity editor (J.Cricket) was designed and it’s currently
under development. As already mentioned, all changes in the clusters, also through manual
actions, are reported in the Entity Registry (see item 17). The J.Cricket development plan is
far-reaching and spans over the current (2022) and the next year (2023).

In addition to J.Cricket, APIs are being developed for a direct connection to the open-source,
RDF editor Sinopia (part of the LD4P initiative). The Library could also decide to use the LC BF
editor (Marva).

SVDE - FOLIO data flow - Step 17

17) Main event: Changes done to entities are tracked in the Entity
Registry

Extended description
The management and tracking of changes to the clusters in the CKB is entrusted to the Entity
Registry. As suggested by the name itself, the Entity Registry is a special tool in which the
association between clusters and the URIs that identify such clusters is registered, and where all
the changes affecting this association are reported. An interesting example is the Redirect, that
is the registration of the redirect from a cluster no longer valid to a valid one: this guarantees
the recovery of the entities and their persistent identification even in the presence of heavy
cluster modifications, such as the merge/matching process.
There are two types of processes that can change clusters and their URIs:

● automatic: these are periodical processes starting from the SMMS, and are activated to
manage the "delta" of the data;

● manual: through the use of the CKB Editor.
The Entity Registry is a tool to guarantee constant control over the entities' CKB and to share
clear and complete information on the data with third parties using the LC data in RDF format.

Each change performed on the entities of the CKB
(both manual and automatic) is reported in the
Entity Registry, which has the key role of keeping
track of every variation of the resource URI, in
order to guarantee the effective and broad sharing
of resources.

SVDE - FOLIO data flow - Step 18

18) Main event: The API layer provides REST APIs layer and a GraphQL
layer to query the data produced by the Library

Extended description
The data produced in the conversion or creation workflow are accessible through an API layer
that will offer two interfaces to query the entities:

● a REST APIs layer
● a GraphQL layer

In the REST API’s several endpoints serve different request types. In the GraphQL layer, the
same endpoint will perform the queries, using a language similar to SQL. GraphQL is a query
language which allows to expose the underlying dataset as a graph. That allows a powerful
mechanism for introspecting the entities and the relationships that form the domain model.
The same entities are also exposed using a RESTFul paradigm, where a persistent URI is
assigned to each entity and HTTP verbs are used for querying / manipulating the dataset.

SVDE - FOLIO data flow - Steps 19, 20, 21

19) Main event: SVDE makes available a SPARQL end point via the triple store
Extended description - SPARQL endpoint - Users can query triple data via SPARQL. A list of properties of datasets will make the query formulation
easier for the user.

20) Main event: The Entity Discovery portal will also display holding data
Extended description - Holdings Lookup - Entity Discovery Interface will also display holding data, integrating APIs to retrieve holding information.

21) Main event: The Entity Discovery portal is connected with local library OPAC
Extended description - Library OPAC discovery: the SVDE entity discovery portal will be connected with the local OPAC of individual libraries. The
Library is free to select the OPAC (VuFind, Blacklight, or any other it decides to adopt): any OPAC can be integrated so that from the entity portal it is
possible to call up local services provided by the selected OPAC.

SVDE - FOLIO data flow - Steps 22, 23

22) Main event: The Library is part of Share-VDE initiative and publishes its
catalogue on the portal, with its own skin

Extended description
SVDE tenant includes data coming from the Library of Congress, with data of many other libraries, in an
integrated linked data common portal. While the main entity discovery portal of a tenant shows the data
of all the institutions feeding the tenant's Cluster Knowledge Base, the skin portal shows only the data of
the institution or group of institutions that the skin has been designed for.

23) Main event: The LOD Platform will make available further tools for data
harvesting, including APIs, OAI-PMH, Atom feeds and Activity stream

Extended description
APIs/Protocols for third parties usage - to close the loop, the data elaborated in the LOD workflow will be
made available to the Library for its use, through protocols including APIs, OAI-PMH, Atom feeds and
Activity stream.

SVDE - FOLIO data flow - Step 24

24) Main event: SVDE is connected with services for the authority control

Extended description
Authority services - the services for the authority control are connected to the MARC and BIBFRAME
data workflow. The LOD Platform is integrated with MARC-based specific service workflows for
automated enrichment, reconciliation, and validation of library data. Submitted data is checked against
a number of leading authoritative sources and updated accordingly. a set of APIs allows for the
interrogation of external sources and authority systems. Options are also available for the automatic
updating of authority records of the library. The authority services provide for the verification and
correction of MARC records and procedures for the automatic enrichment of MARC fields with standard
identifiers in URI format from different sources (e.g. URIs from VIAF, ISNI, LCNAF, LCSH, LCGFT, FAST
etc.). URIs are added to MARC fields to identify the data unambiguously. In addition to linking the data
in the bibliographic records to additional information found in other sources, adding URIs to MARC
records is a prerequisite for converting the records into linked data, which is increasingly important for
the transition of the library community to the new generation cataloging.
This authority service will also be available for bibliographic descriptions in linked data: in addition to
verifying and correcting MARC records, authority control features are designed for linked data-based
workflows (e.g. BIBFRAME format). This process will be supported by the LOD Platform technology.

SVDE - FOLIO data flow - Step 25

25) Main event: A unique search system to cross-repositories is
available for staff searching

Extended description
The purpose of this search layer is to centralize the responsibility of providing cross-cutting staff
search services across three different subsystems:

● FOLIO (Inventory)
● Marc-UP
● Linked Data Management System (LDMS)

The module acts as a separate and independent layer that can manage entities composed of a
shared superset of all properties belonging to those three different datasets.
The definition of such an entity is configured within the staff search module and it is published
to the other modules, so they are aware of the shape they need to send for synchronizing their
data.
As a consequence of that, the responsibility of sending data in the correct format relies on a
transformation pipeline implemented on the caller side.
The following diagram illustrates the main components involved in the metasearch subsystem.

Share-VDE - FOLIO data flow

https://drive.google.com/file/d/1FkSlgEITWE_ufUDNG_x4lbN1wByxoij4/view

J.Cricket entity editor

40

From linked data publication to linked data editing

The Share family platform is evolving from a
discovery environment that converts traditional
MARC data of libraries in Linked Open Data to
an interactive authoritative source providing real
services for libraries. This transition is happening
through the editor named J.Cricket, that is the
new application dedicated to the editing of the
clusters of data in a collaborative and integrated
environment.

41

From linked data publication to linked data editing

The editing tool J.Cricket will allow for editing the
SVDE Cluster Knowledge Base, Sapientia,
enabling several actions on the clusters (entities)
saved in the SVDE database, including creation,
modification, merge of clusters of works, of
agents etc.
J.Cricket will extend authority capabilities through
the integration with external data sources such as
Wikidata and ISNI.

Active participation and concrete output

Libraries members of Share-VDE and Share Family Working Groups and parallel projects are
constantly contributing with their Subject Matter Experts to requirements gathering, functional
analysis and feedback to developments.

42

Share Family Working Groups:

● National bibliographies Working Group
involving SVDE members and external
institutions

● Italian group for the conversion
UNIMARC - BIBFRAME

● discussions in the field of photo libraries
and audio-visual collections

Share-VDE Advisory Council and
Working Groups:
● Share-VDE Advisory Council
● Sapientia Entity Identification WG
● Authority/Identifier Management

Services WG
● Cluster Knowledge Base Editor WG
● User experience/User Interface WG

Authority/Identifier Management Services WG

43

The AIMS WG defines guidelines and best practices for Authority/Identifier management; defines
scope and data-flow for the creation and implementation of automated services based on
preliminary documentation; proposes additional use cases identified as essential for effective
knowledge base management.
Group materials (meetings are on hold)

Latest outcomes: new generation of services for the authority control
● definition of use cases;
● functional analysis;
● analysis of interaction with Wikidata and ISNI (joint work with CKBE WG to design J.Cricket

functionalities);
● pilot of MARC-based authority services with Stanford University Libraries;
● initial analysis of services for authority control in linked data workflows.

https://wiki.share-vde.org/wiki/ShareVDE:Members/Share-VDE_working_groups#SVDE-AC_Authority.2FIdentifier_Management_Services_working_group_.28AIMS.29
https://drive.google.com/drive/folders/1Ste42dRjBan0UVTKBVP4F_zdiF5Wya_H

Cluster Knowledge Base Editor WG

44

The CKBE WG analyses how libraries interact with the Sapientia Cluster Knowledge Base (CKB)
and their use of the J.Cricket Editor for modifying (correcting / enriching), deleting, merging and
separating clusters.
Group materials (meetings are on hold)

Latest outcomes: back-end developments for J.Cricket entity editor started
● definition of use cases;
● design of manual editing features;
● analysis of interaction with Wikidata and ISNI to be incorporated into J.Cricket and

authority dataflows that feed the Cluster Knowledge Base (joint work with AIMS WG to
design J.Cricket functionalities);

● back-end developments started; respective front-end features will follow throughout
2022.

https://wiki.share-vde.org/wiki/ShareVDE:Members/Share-VDE_working_groups#SVDE-AC_Cluster_Knowledge_Base_Editor_working_group_.28CKB_editor.29
https://drive.google.com/drive/folders/1gg4Q5kMyBpdeAyaumoLTIe0eGRS3Fte3

Towards the Share-VDE Sapientia CKB ecosystem

45

Sapientia
Cluster

Knowledge
Base

J.Cricket editor

Next generation cataloguing

The J.Cricket editor is an example of how the Share family of initiatives is pursuing
a new way of managing library cataloguing:

● aggregation of data from multiple sources
● managed through standard protocols (linked data)
● in a collaborative and integrated environment
● that makes available open data and resources
● to end users and professionals (researchers, scholars etc.)
● for reuse in the library community and beyond

46

J.Cricket - How does it work?

J.Cricket 1.1.0: Features Recap

48

● AAA: Authentication + Authorization + Auditing
● Cluster Status API
● Edit Cluster

○ real time notifications (through GraphQL subscriptions) about cluster property changes
● Merge: C1, C2, C3 => C1, C2, C3

○ Multiple phases: create the merge list, edit the merge list, edit clusters, request for review, approve (or
deny the merge)

● Split (Cluster): C1 => C1, C2
○ C2 could even be a new cluster
○ Multiple phases: create the split-set, edit the split-set, edit clusters, request for review, approve (or deny

the merge)
● Dictionary API: What are the available cluster types? Which attributes belong to a cluster type? Which

relationships? Given an attribute, which is its cardinality? Is it mandatory or not?
● Data changes synchronization across Share-VDE storages (e.g. RDF Store, Search Engine, RDBMS)
● Entity Event Log (aka cluster changes): give me the history of changes of a given cluster
● User notifications: for managing the merge/split review lifecycle

Edit

Edit - Overview

50

The Edit Cluster operation is available for J.Cricket editors to add, remove and
amend attributes, relationships and links belonging to a single Entity.

If the user is a basic editor, only the properties coming from the user’s provenance
will be editable. If the user is an advanced editor, the whole Prism (meaning all
properties) will be editable.

We will show the use cases related to this scenario, observing the client interaction
with the Share-VDE server in relation to editing one property at a time (the
recommended way to implement the edit feature).

However, the server supports submitting changes for multiple properties at the
same time as well, with some limitations for transient values broadcast.

Edit - An editor enters an Entity s̓ page

51

Share-VDE GraphQL Server

A user with the “editor” role enters an entity’s page.

When the Entity changes due to someone else modifying it, the change is notified to our user’s browser as
well, and the application updates the related field.

The application establishes a GraphQL subscription to
Share-VDE to keep the page updated on Entity’s
changes (status, attributes, relationships, links).

Edit - An editor adds a new property (1 / 4)

52

The user adds a new attribute (attribute, relationship or link)

Share-VDE GraphQL
Server

Title: Submit Cancel

2. No persistence is made by the server, as the
change is still transient, but it responds with the
empty attribute containing the
server-assigned identifier.

+ Add new

Is leader:

Language:

Initially, the client application uses the Dictionary API to
request the Entity’s Dictionary description, so to know what
the Entity does support in terms of properties (attributes,
relationships, links). This will guide the client in building a
consistent UI.

3. The client must not let the user enter values
in the new field before getting that response
from the server.

1. The application sends a mutation to the
GraphQL server notifying a new (still
transient) property has been added.

Edit - An editor adds a new property (2 / 4)

53

The user starts making changes to the new attribute.
The mechanics, despite some intrinsic differences between the property types, are the same for relationships and links
as well.

Share-VDE GraphQL
Server

Solr inTitle: Submit Cancel

No persistence is made by the server, as the
change is still transient.

Is leader: ✓

En|Language:
Armenian
English
…

At a certain time interval (e.g. 1s), a mutation is
sent to the GraphQL server to let it broadcast the
changes to other subscribers. On the first
mutation sent, the server switches the
cluster+provenance binomial status to “EDIT”.

Edit - An editor adds a new property (3 / 4)

54

The user may now hit the field’s Cancel button

Share-VDE GraphQL
Server

Solr in actionTitle: Submit Cancel

If no other user with an overlapping provenance is
editing the Prism (a.k.a. Cluster), the Prism’ status shifts
back to “SAVED”

✓Is leader:

EnglishLanguage:

A mutation is sent to the GraphQL server to set
the previous value back and broadcast the reset
to subscribers.

Edit - An editor adds a new property (4 / 4)

55

The user can now hit the field’s Submit button

Share-VDE GraphQL
Server

Solr in actionTitle: Submit Cancel

If no other user with an overlapping provenance is
editing the Prism (a.k.a. Cluster), the Prism’ status is
updated to “SAVED”

✓Is leader:

EnglishLanguage:

The client sends a mutation to make the server
persist the change.

Edit - A user edits an existing property (1 / 3)

56

The user edits a property.

Share-VDE GraphQL
Server

Solr in action|Title: Submit Cancel

No persistence is made by the server, as the
change is still transient.

✓Is leader:

EnglishLanguage:

At a certain time interval (e.g. 1s), a mutation is
sent to the GraphQL server to let it broadcast the
change to other subscribers. On the first mutation
sent, the server switches the cluster+provenance
binomial status to “EDIT”.

Edit - A user edits an existing property (2 / 3)

57

The user may now hit the field’s Cancel button

Share-VDE GraphQL
Server

Solr in actionTitle: Submit Cancel

If no other user with an overlapping provenance is
editing the Prism (a.k.a. Cluster), the Prism’ status shifts
back to “SAVED”

✓Is leader:

EnglishLanguage:

A mutation is sent to the GraphQL server to set
the previous value back and broadcast the reset
to subscribers.

Edit - A user edits an existing property (3 / 3)

58

The user can now hit the field’s Submit button

Share-VDE GraphQL
Server

Solr in actionTitle: Submit Cancel

If no other user with an overlapping provenance is
editing the Prism (a.k.a. Cluster), the Prism’ status is
updated to “SAVED”

✓Is leader:

EnglishLanguage:

The client sends a mutation to make the server
persist the change.

Edit - An editor deletes a property

59

The user deletes a property.

Share-VDE GraphQL
Server

Andrea Gazzarini

The GraphQL server persists the change, the mutation triggers
the change broadcast to other subscribers.

The Prism status is brought back to “SAVED”.

Is leader:

The change is not transient, i.e. it is immediately
persisted.

❌ Delete relationship

Author ▼ ▼

Merge

Merge - Overview (1 / 2)

61

The Merge Clusters operation is available for users with the “advanced editor” role to
convey one or more source Entities into one, picking the source Cluster(s) properties
that must be ported.

The user picks two or more Clusters to merge, then designates the destination one. The
remaining Clusters are automatically marked as “source”. Such destination or source
traits are sealed by dedicated statuses “MD” (Merge Destination) and “MS” (Merge
Source) .

After that, the user can choose which properties to copy to the destination Entity.

Merge - Overview (2 / 2)

62

After picking all the properties to put in the destination Cluster, the user confirms the
merge and contextually requests a review action by designating a reviewer. The
destination Cluster shifts its status to “RN” (Review Needed).

The reviewer may approve the merge; at that point the destination Cluster shifts its
status to “SV” (Saved), while source Clusters acquire the status “IN” (Invalidated).

Invalidated Clusters will remain in the system, but they won’t be indexed anymore, i.e.
they will not appear in search results.

The reviewer may even reject the merge; in that case the destination cluster shifts back
to the “MD” status; the reviewer provides some rejection notes to guide the editor.

Merge - An editor enters an Entity s̓ page

63

Share-VDE GraphQL Server

A user with the “advanced editor” role enters an entity’s page.

When the Entity changes due to someone else modifying the same Entity, the change is notified to our user’s
browser as well, and the application updates the related field.

The application establishes a GraphQL subscription to
Share-VDE to keep the page updated on Entity’s
changes (status, attributes, relationships, links).

Merge - An Entity is added to the Merge List

64

While browsing entities, the user adds them to the Merge List

People
● Jules Verne (16455887799)
● Julius Verneau (1234567383322)
● …

Opuses
…

The Merge List is subdivided by Entity type.
It works just like a shopping cart.

Share-VDE GraphQL Server A mutation is sent to inform the server about the action, so to let it
set the entities status to “ML” (Merge List).

Merge - Entity is removed from the Merge List

65

While looking at the Merge List, the user decides to remove an Entity from it.

People
● Jules Verne (16455887799)
● Julius Verneau (1234567383322)
● Julius Vernell (187634562)

Share-VDE GraphQL Server

A mutation is sent to inform the server about the action,
so to bring back the Entity’s status to “SV” (Saved).

Merge - The user confirms the Merge List

66

When all of the Entities of interest are in the Merge List, the user designates the destination Entity and confirms the
Merge List

Share-VDE GraphQL Server

A mutation is sent to inform the server about the action.

Choose destination:

🔘 Jules Verne (16455887799)
⚪ Julius Verneau (1234567383322)
⚪ Julius Vernell (187634562)

All the non-destination Entities are given the “MS” (Merge Source) status.
The destination Entity acquires the “MD” (Merge Destination) status.

Merge - Properties are added to the destination

67

The user chooses what properties coming from source Entities must be added to the destination, designates a reviewer,
and then confirms the operation

Share-VDE GraphQL Server

Assign a reviewer: Zancan, Federico ▼

A mutation is sent to the server, containing all the new
properties for the destination Cluster.

The destination Cluster is given the “RN” status (Review
Needed).

The designated reviewer is notified
about the assignment.

NOTE: While adding “foreign” properties to the
destination entity, the user has the option to mark them
as the leader form.

This operation will override any previous leader form for
the same property already present in the destination.

Merge - The Reviewer approves the Merge

68

The designated Reviewer analyzes the merge result and decides to approve it

Share-VDE GraphQL Server

A mutation is sent to the server, changing the destination Entity’s status to “SV” (Saved)

Source Entities pass from the “MS” (Merge Source) to the “IN” (Invalidated) status. Although they remain in the system, and their
URIs are still valid, they are not part of search results anymore.

If visited, their pages show off in a greyed-out fashion.

Merge - The Reviewer rejects the Merge

69

The designated Reviewer analyzes the merge result and decides to reject it

Share-VDE GraphQL Server

A mutation is sent to the server, changing the destination
Entity’s status to “MD” (Merge Destination) and registering
the rejection notes the Reviewer wanted to provide as
additional information or guidelines for the editor.

Rejection notes (optional):

The Editor gets notified about the
rejection.

He/she goes back to adding/removing new
properties to the destination Entity,

amends what’s needed and resubmits the
review request.

Split

Split - Overview (1 / 2)

71

The Split Cluster operation is available for users with the “advanced editor” role to let
them move one or more properties between two clusters.

The user picks the “Giver” and “Receiver” Clusters. The giver Cluster takes the “SG”
(Split Giver) status, while the receiver takes the “SR” (Split Receiver) status.

The user can then choose the giver’s properties to be moved to the receiver.

When satisfied with the choice, the user confirms the split and contextually requests a
review action by designating a reviewer. The receiver Cluster shifts its status to “RN”
(Review Needed).

Split - Overview (2 / 2)

72

The reviewer may approve the split; at that point the giver and receiver Clusters shift
their status to “SV” (Saved).

The reviewer may even reject the split; in that case the receiver cluster shifts back to the
“SR” (Split Receiver) status; the reviewer provides some rejection notes to guide the
editor.

Split - An editor enters an Entity s̓ page

73

Share-VDE GraphQL Server

A user with the “advanced editor” role enters an entity’s page.

When the Entity changes due to someone else modifying the same Entity, the change is notified to our user’s
browser as well, and the application updates the related field.

The application establishes a GraphQL subscription to
Share-VDE to keep the page updated on Entity’s
changes (status, attributes, relationships, links).

Split - The user activates the Split

74

Share-VDE GraphQL Server

The user activates the split context, designating the giver and the receiver.

 A mutation is sent to the server, changing the giver Entity’s status to “SG” (Split Giver). A
second mutation is sent to let the server mark the receiver Entity with the status SR (Split
Receiver).

It is important to state that both the operations can even be contextual other than
separate. The important thing is: the split operation starts when the split context is
confirmed.

Split - The user moves the properties

75

Share-VDE GraphQL Server

The user moves the giver’s properties to the receiver.

When confirming the move and the reviewer designation, a mutation is sent
to the server, containing the properties removed (from the giver) and added
(to the receiver).

Assign a reviewer: Zancan, Federico

The destination Cluster is given the “RN” status (Review Needed).

The designated reviewer is notified about the assignment.

Split - The Reviewer approves the Split

76

The designated Reviewer analyzes the properties that have been moved and decides to give the approval

Share-VDE GraphQL Server

A mutation is sent to the server, changing the giver’s and the receiver’s statuses to “SV” (Saved).

The giver is now available to the world, deprived of the yielded properties.

The receiver is now available to the world, enriched of the given properties.

Split - The Reviewer rejects the Split

77

The designated Reviewer analyzes the split result and decides to reject it

Share-VDE GraphQL Server

A mutation is sent to the server, changing the receiver
Entity’s status to “SR” (Split Receiver) and registering the
rejection notes the Reviewer wanted to provide as
additional information or guidelines for the editor.

Rejection notes (optional):

The editor gets notified about the
rejection.

He/she goes back to adding/removing new
properties to the destination Entity,

amends what’s needed and resubmits the
review request.

J.Cricket - Postponed Features

78

● Create new Cluster
● Split cluster outputs n clusters (n >= 2)
● Unauthorized users should be able to request changes to entities
● Ad-hoc alert system for misaligned clusters with respect to bibliographic records

J.Cricket roadmap

79

Thank you

tiziana.possemato@atcult.it
tiziana.possemato@casalini.it

https://wiki.svde.org/
https://svde.org
info@svde.org

mailto:tiziana.possemato@atcult.it
mailto:tiziana.possemato@casalini.it
https://wiki.share-vde.org/

