
Share VDE - Backend

Andrea Gazzarini

www.share-vde.org
info@share-vde.org

Overview

Search API: Overview

3

Users

Apps

StructQL

TermsQL

SVDEQL
Cloud

Data management

Search API

Data

How can we interact with API?

Query Languages

5

GraphQL REST

StructQL TermsQLSVDEQL

Full text Typeahead

Interface Level

Query Language Level

Search Level

TermsQL

6

● Available in GraphQL and REST endpoints
● It isn’t a query language itself
● The query string is composed only by terms
● When used, it triggers a typeahead search (see here for a detailed functional description)
● The response contains

○ matching entities with highlighting snippets
○ (optionally*) a “correctlySpelled” flag which indicates if some correction has been applied to the original terms
○ (optionally*) matching entities in other languages

GraphQL

REST

TermsQL{OR}

* Only if the feature has been enabled and in case of zero results (using original terms + requestor language)

https://docs.google.com/presentation/d/1fGnpIaOMxZlaQ7x8QPiWz47uUkV__ksxFxGGygT9pj8/edit#slide=id.g9112784b91_0_29

SVDEQL / StructQL

7

● Simple: we don’t want to build another query language
● Dedicated grammar for expressing and validating the “advanced search” syntax
● Easy and human-readable way to express an information need
● Communication protocol between frontend and backend
● Could be potentially exposed to advanced users in the future
● Only a “format” difference between the two query languages

people whose name contains Pastorius
AND birth date is in range from 1942 to 1956usic=

Example

agents whose
name contains Carroll AND
name contains Lewis

StructQL vs SVDEQL

8

Example

{
 q: [
 { name : {p: CONTAINS, o: "Carroll"}, op:AND },
 { name : {p: CONTAINS, o: "Lewis"}}
]
}

StructQL SVDEQL
● Only available in the GraphQL endpoint
● JSON-like structure
● Grammar enforced by GraphQL schema

● Available in the GraphQL and REST endpoints
● Pseudo-natural syntax
● Grammar enforced by JAVACC

What do we get in output?

Hybrid Response: Realtime and Near Realtime

StructQL

TermsQL

SVDEQL

Search API

Search (query, filters, sort)

1

2

Response

Resources Collection

Pagination

Facets

Resource

Query Languages

11

GraphQL REST

StructQL TermsQLSVDEQL

Full text Typeahead

Interface Level

Query Language Level

Search Level

RESTFul API

12

● Hypermedia As The Engine Of Application State (HATEOAS)
● Share VDE resources provide information dynamically through hypermedia
● client actions are discovered within resource representations returned from the server
● linked resources are expressed through URIs, in dedicated sections of the resource

representation
● https://en.wikipedia.org/wiki/HATEOAS

https://en.wikipedia.org/wiki/HATEOAS

RESTFul API: Resource (Person)

13

{
 "heading": "Carroll, Lewis",
 ...
 "_links": {
 "self": [
 { "href": "https://share-vde.org/people/201" },
 { "href": "https://share-vde.org/agents/201" },
 { "href": "http://isni.org/isni/000000012137136X", "type": "ISNI" },
 { "href": "https://viaf.org/viaf/66462036", "type": "VIAF" }
],
 "photo": { "href": "https://commons.wikimedia.org/wiki/lc_1863.jpg" },
 "birth_place": { "href": "https://share-vde.org/places/7295222" }
 },
 "alternate_headings": ["Dodgson, Charles Lutwidge", "Karol, Luis"],
 "birth_date": 1832,
 "death_date": 1898
}

https://sit-base-svde.atcult.it/people/201
https://sit-base-svde.atcult.it/agents/201
https://sit-base-svde.atcult.it/places/7295222

RESTFul API: Collection (People)

14

{
 "_embedded": {
 "agentList": [
 {
 "heading": "Carroll, Lewis",
 "_links": {
 ...
 },
 {
 "heading": "Dodgson, Campbell",
 "alternate_headings": ["Dodgson, C."],
 "birth_date": 1867,
 "death_date": 1948
 },
 ...

HATEOAS: Faceted Collection (Agents)

15

 ...
 "facets": {
 "facet_fields": {
 "location": {
 { "https://share-vde.org/places//5387877": 3,
 "https://share-vde.org/places/2650225": 2,
 ...
 },
 "type": {
 "https://share-vde.org/agentTypes/Meeting": 6,
 "https://share-vde.org/agentTypes/Person": 4,
 "https://share-vde.org/agentTypes/Family": 3,
 "https://share-vde.org/agentTypes/Organisation": 1
 }

GraphQL

16

GraphQL
(Query)
Request

StructQL

SVDEQL

TermsQL

encapsulates a query using

defines
GraphQL
Endpoint

executes

Response

produces

conform
s to

Response
Shape

Pagination

Resources

Facets

contains

0...1

1

0…*

JSON-like
structure

which is

For each work return the language, specifically the URI and the heading

For each opus return the child works

For each opus return these literal attributes

For each person return the opuses he contributed

For each person return these literal attributes

Main query

GraphQL: Example Request

17

{
 people(svdeql: {q: "people whose name contains meyer AND birthDate is in range from 1950 to 1988 "}) {
 resources {
 uri
 preferredHeading
 alternateHeadings
 birthDate
 opuses {
 resources {
 uri
 preferredHeading
 works {
 resources {
 uri
 language {
 uri
 preferredHeading
 }
 }
 }
 }
 }
 }
 }
}

GraphQL: Example Response (extract)

18

{
 people(svdeql: {q: "people whose name contains meyer AND birthDate is in range from 1950 to 1988 "}) {
 resources {
 uri
 preferredHeading
 alternateHeadings
 birthDate
 opuses {
 resources {
 uri
 preferredHeading
 works {
 resources {
 uri
 language {
 uri
 preferredHeading
 }
 }
 }
 }
 }
 }
 }
}

 {
 "uri": "https://share-vde.org/agents/211631289194108",
 "preferredHeading": "Meyer, Han",
 "alternateHeadings": [
 "Meyer, Valentin Johannes",
 "Meyer, Han"
],
 "opuses": {
 "resources": [
 {
 "uri": "https://share-vde.org/opuses/181631290147810",
 "preferredHeading": "Stad en de haven",
 "works": {
 "resources": [
 {
 "uri": "https://share-vde.org/works/181631290147812",
 "language": {
 "uri": "https://share-vde.org/languages/21631288253353",
 "preferredHeading": "Inglese"
 }
 }
]
 }
 },
 {
 "uri": "https://share-vde.org/opuses/961631362475595",
 "preferredHeading": "Delta urbanism",
 "works": {
 …
 (other people follow)

Search Features

FullText Search

20

Simple (terms/phrases) Search

Typeahead Search

Advanced Search

Exact Match Suggestions

21

{
 exactMatches(q: "tchaikovsky") {
 resources {
 ... (other)
 }
 }
}

A search which targets only entities whose headings or identifiers exactly match the query, partially or
totally.

{
 exactMatches(q: "0000000113258500 ...") {
 resources {
 ... (other)
 }
 }
}

Query Explanation

22

“tell me what the agent 981631362140359 has to do with the term populonia”

A virtual explanation entity, associated to a core entity (e.g. Agent, Opus) which provides insights about
the reason why a given resource has been included in search results.

/meetings/981631362140359/explanation?terms=populonia

Request "meta": {
 "aut": {
 "type": "Role",
 "language": "eng",
 "label": "author"
 }
 },
 "aut": [
 {
 "title": "Corsica e Populonia"
 }
],

Response

which means“The term Populonia occurs in the title of an Opus where
the Meeting contributed as an author”

Share VDE - Backend

Andrea Gazzarini

www.share-vde.org
info@share-vde.org

Thank you!

